
Introduction and Big-O notation

Bronson Rudner

South African Programming Olympiad
Training Camp

December 12, 2020

B. Rudner Introduction and Big-O notation December 12, 2020 1 / 17



What do I need to know to solve programming problems?

Basic coding skills and fluency

Knowledge of algorithms and data structures

Ability to problem solve

B. Rudner Introduction and Big-O notation December 12, 2020 2 / 17



What do I need to know to solve programming problems?

Basic coding skills and fluency

Knowledge of algorithms and data structures

Ability to problem solve

B. Rudner Introduction and Big-O notation December 12, 2020 2 / 17



What do I need to know to solve programming problems?

Basic coding skills and fluency

Knowledge of algorithms and data structures

Ability to problem solve

B. Rudner Introduction and Big-O notation December 12, 2020 2 / 17



What do I need to know to solve programming problems?

Basic coding skills and fluency

Knowledge of algorithms and data structures

Ability to problem solve

B. Rudner Introduction and Big-O notation December 12, 2020 2 / 17



Todays agenda

We are focusing on algorithms and data structures. Why?

Learning to code these will ensure you develop your basic coding skills
and fluency

Many problems reduce to one of, or some subset of these

They provide inspiration for further solutions

Serve as a guideline for solving problems efficiently

B. Rudner Introduction and Big-O notation December 12, 2020 3 / 17



Todays agenda

We are focusing on algorithms and data structures. Why?

Learning to code these will ensure you develop your basic coding skills
and fluency

Many problems reduce to one of, or some subset of these

They provide inspiration for further solutions

Serve as a guideline for solving problems efficiently

B. Rudner Introduction and Big-O notation December 12, 2020 3 / 17



Todays agenda

We are focusing on algorithms and data structures. Why?

Learning to code these will ensure you develop your basic coding skills
and fluency

Many problems reduce to one of, or some subset of these

They provide inspiration for further solutions

Serve as a guideline for solving problems efficiently

B. Rudner Introduction and Big-O notation December 12, 2020 3 / 17



Todays agenda

We are focusing on algorithms and data structures. Why?

Learning to code these will ensure you develop your basic coding skills
and fluency

Many problems reduce to one of, or some subset of these

They provide inspiration for further solutions

Serve as a guideline for solving problems efficiently

B. Rudner Introduction and Big-O notation December 12, 2020 3 / 17



Todays agenda

We are focusing on algorithms and data structures. Why?

Learning to code these will ensure you develop your basic coding skills
and fluency

Many problems reduce to one of, or some subset of these

They provide inspiration for further solutions

Serve as a guideline for solving problems efficiently

B. Rudner Introduction and Big-O notation December 12, 2020 3 / 17



Types of problems in programming contests

1 Ad-Hoc

2 Greedy

3 Computational Geometry

4 Dynamic Programming

5 BigNums

6 Two-Dimensional

7 Eulerian Path

8 Minimum Spanning Tree

9 Knapsack

10 Network Flow

11 Flood Fill

12 Shortest Path

13 Approximate Search

14 Complete Search

15 Recursive Search Techniques

16 Heuristic Search

B. Rudner Introduction and Big-O notation December 12, 2020 4 / 17



How fast are computers?

Computers are fast - but their speed is still finite

On the order of 100 000 000 operations per second (C++)

Java about 2x slower, Python about 10x slower (and Scratch is about
100x slower)

It isn’t enough to find an algorithm that solves a problem

It needs to solve it within the time limit

B. Rudner Introduction and Big-O notation December 12, 2020 5 / 17



How fast are computers?

Computers are fast - but their speed is still finite

On the order of 100 000 000 operations per second (C++)

Java about 2x slower, Python about 10x slower (and Scratch is about
100x slower)

It isn’t enough to find an algorithm that solves a problem

It needs to solve it within the time limit

B. Rudner Introduction and Big-O notation December 12, 2020 5 / 17



How fast are computers?

Computers are fast - but their speed is still finite

On the order of 100 000 000 operations per second (C++)

Java about 2x slower, Python about 10x slower (and Scratch is about
100x slower)

It isn’t enough to find an algorithm that solves a problem

It needs to solve it within the time limit

B. Rudner Introduction and Big-O notation December 12, 2020 5 / 17



How fast are computers?

Computers are fast - but their speed is still finite

On the order of 100 000 000 operations per second (C++)

Java about 2x slower, Python about 10x slower (and Scratch is about
100x slower)

It isn’t enough to find an algorithm that solves a problem

It needs to solve it within the time limit

B. Rudner Introduction and Big-O notation December 12, 2020 5 / 17



How fast are computers?

Computers are fast - but their speed is still finite

On the order of 100 000 000 operations per second (C++)

Java about 2x slower, Python about 10x slower (and Scratch is about
100x slower)

It isn’t enough to find an algorithm that solves a problem

It needs to solve it within the time limit

B. Rudner Introduction and Big-O notation December 12, 2020 5 / 17



E.g.

The Fibonacci series is given by

1, 1, 2, 3, 5, 8, . . .

where the next number in the sequence is given by the sum of the two
preceding numbers

Find the nth Fibonacci number, given that 1 ≤ n ≤ 1 000

def slow_fibonacci(n):

if n == 1 or n == 2:

return 1

else:

return slow_fibonacci(n-1) + slow_fibonacci(n-2)

Increasing n by 1, (roughly) doubles the total number of calls of
slow fibonacci.

n = 40 calls slow fibonacci about 200 000 000 times!

B. Rudner Introduction and Big-O notation December 12, 2020 6 / 17



E.g.

The Fibonacci series is given by

1, 1, 2, 3, 5, 8, . . .

where the next number in the sequence is given by the sum of the two
preceding numbers

Find the nth Fibonacci number, given that 1 ≤ n ≤ 1 000

def slow_fibonacci(n):

if n == 1 or n == 2:

return 1

else:

return slow_fibonacci(n-1) + slow_fibonacci(n-2)

Increasing n by 1, (roughly) doubles the total number of calls of
slow fibonacci.

n = 40 calls slow fibonacci about 200 000 000 times!

B. Rudner Introduction and Big-O notation December 12, 2020 6 / 17



E.g.

The Fibonacci series is given by

1, 1, 2, 3, 5, 8, . . .

where the next number in the sequence is given by the sum of the two
preceding numbers

Find the nth Fibonacci number, given that 1 ≤ n ≤ 1 000

def slow_fibonacci(n):

if n == 1 or n == 2:

return 1

else:

return slow_fibonacci(n-1) + slow_fibonacci(n-2)

Increasing n by 1, (roughly) doubles the total number of calls of
slow fibonacci.

n = 40 calls slow fibonacci about 200 000 000 times!

B. Rudner Introduction and Big-O notation December 12, 2020 6 / 17



E.g.

The Fibonacci series is given by

1, 1, 2, 3, 5, 8, . . .

where the next number in the sequence is given by the sum of the two
preceding numbers

Find the nth Fibonacci number, given that 1 ≤ n ≤ 1 000

def slow_fibonacci(n):

if n == 1 or n == 2:

return 1

else:

return slow_fibonacci(n-1) + slow_fibonacci(n-2)

Increasing n by 1, (roughly) doubles the total number of calls of
slow fibonacci.

n = 40 calls slow fibonacci about 200 000 000 times!

B. Rudner Introduction and Big-O notation December 12, 2020 6 / 17



E.g.

The Fibonacci series is given by

1, 1, 2, 3, 5, 8, . . .

where the next number in the sequence is given by the sum of the two
preceding numbers

Find the nth Fibonacci number, given that 1 ≤ n ≤ 1 000

def slow_fibonacci(n):

if n == 1 or n == 2:

return 1

else:

return slow_fibonacci(n-1) + slow_fibonacci(n-2)

Increasing n by 1, (roughly) doubles the total number of calls of
slow fibonacci.

n = 40 calls slow fibonacci about 200 000 000 times!

B. Rudner Introduction and Big-O notation December 12, 2020 6 / 17



Big-O notation

Gives a rough idea of the runtime of a program / function

Is expressed in relation to the size of the input (n).

If a program is O(f (n)), we mean it takes no more than C · f (n) steps
in total, for suitably large n (for some constant C ).

In particular, if a program takes T (n) steps, it is O(T (n)).

B. Rudner Introduction and Big-O notation December 12, 2020 7 / 17



Big-O notation

Gives a rough idea of the runtime of a program / function

Is expressed in relation to the size of the input (n).

If a program is O(f (n)), we mean it takes no more than C · f (n) steps
in total, for suitably large n (for some constant C ).

In particular, if a program takes T (n) steps, it is O(T (n)).

B. Rudner Introduction and Big-O notation December 12, 2020 7 / 17



Big-O notation

Gives a rough idea of the runtime of a program / function

Is expressed in relation to the size of the input (n).

If a program is O(f (n)), we mean it takes no more than C · f (n) steps
in total, for suitably large n (for some constant C ).

In particular, if a program takes T (n) steps, it is O(T (n)).

B. Rudner Introduction and Big-O notation December 12, 2020 7 / 17



Big-O notation

Gives a rough idea of the runtime of a program / function

Is expressed in relation to the size of the input (n).

If a program is O(f (n)), we mean it takes no more than C · f (n) steps
in total, for suitably large n (for some constant C ).

In particular, if a program takes T (n) steps, it is O(T (n)).

B. Rudner Introduction and Big-O notation December 12, 2020 7 / 17



Big-O notation

It is an upper bound:

n = O(n2), n2 = O(n2), 1 = O(n)

We ignore constant factors:

3n2 = O(n2),
1

2
n = O(n)

We only care about the largest term:

n2 + n = O(n2), 2n2 + 3n + 1000 = O(n2)

B. Rudner Introduction and Big-O notation December 12, 2020 8 / 17



Big-O notation

It is an upper bound:

n = O(n2), n2 = O(n2), 1 = O(n)

We ignore constant factors:

3n2 = O(n2),
1

2
n = O(n)

We only care about the largest term:

n2 + n = O(n2), 2n2 + 3n + 1000 = O(n2)

B. Rudner Introduction and Big-O notation December 12, 2020 8 / 17



Big-O notation

It is an upper bound:

n = O(n2), n2 = O(n2), 1 = O(n)

We ignore constant factors:

3n2 = O(n2),
1

2
n = O(n)

We only care about the largest term:

n2 + n = O(n2), 2n2 + 3n + 1000 = O(n2)

B. Rudner Introduction and Big-O notation December 12, 2020 8 / 17



Big-O notation

We usually consider the worst case bound

E.g. linear search can be O(1) in the best case, but in the worst case,
and on average, it is O(n)

If you are sure the data is suitably random, you could use average
time bound

Can also describe memory of a program - but usually you are given
more memory than the time bound anyway

B. Rudner Introduction and Big-O notation December 12, 2020 9 / 17



Big-O notation

We usually consider the worst case bound

E.g. linear search can be O(1) in the best case, but in the worst case,
and on average, it is O(n)

If you are sure the data is suitably random, you could use average
time bound

Can also describe memory of a program - but usually you are given
more memory than the time bound anyway

B. Rudner Introduction and Big-O notation December 12, 2020 9 / 17



Big-O notation

We usually consider the worst case bound

E.g. linear search can be O(1) in the best case, but in the worst case,
and on average, it is O(n)

If you are sure the data is suitably random, you could use average
time bound

Can also describe memory of a program - but usually you are given
more memory than the time bound anyway

B. Rudner Introduction and Big-O notation December 12, 2020 9 / 17



E.g.

What is the Big-O of the following function?

def triangular_nums(n):

nums = []

for i in range(n):

num = 0

for j in range(i+1):

num += j+1

nums.append(num)

return nums

Answer: O(n2)

B. Rudner Introduction and Big-O notation December 12, 2020 10 / 17



E.g.

What is the Big-O of the following function?

def triangular_nums(n):

nums = []

for i in range(n):

num = 0

for j in range(i+1):

num += j+1

nums.append(num)

return nums

Answer: O(n2)

B. Rudner Introduction and Big-O notation December 12, 2020 10 / 17



E.g.

What is the Big-O of the following function?

def is_prime(n):

if n % 2 == 0:

return False

i = 3

while i * i <= n:

if n % i == 0:

return False

i += 2

return True

Answer: O(
√
n)

B. Rudner Introduction and Big-O notation December 12, 2020 11 / 17



E.g.

What is the Big-O of the following function?

def is_prime(n):

if n % 2 == 0:

return False

i = 3

while i * i <= n:

if n % i == 0:

return False

i += 2

return True

Answer: O(
√
n)

B. Rudner Introduction and Big-O notation December 12, 2020 11 / 17



E.g.

What is the Big-O of the following function?

def foo(nums1, nums2):

total = 0

for x in nums1:

total += x

for x in nums1:

for y in nums2:

total += x * y

return total

Answer: O(nm) (where n, m is the size of nums1, nums2, respectively)

B. Rudner Introduction and Big-O notation December 12, 2020 12 / 17



E.g.

What is the Big-O of the following function?

def foo(nums1, nums2):

total = 0

for x in nums1:

total += x

for x in nums1:

for y in nums2:

total += x * y

return total

Answer: O(nm) (where n, m is the size of nums1, nums2, respectively)

B. Rudner Introduction and Big-O notation December 12, 2020 12 / 17



E.g.

What is the Big-O of the following function?

def sum_powers_of_two(n):

total = 0

i = 1

while i < n:

total += i

i *= 2

return total

Answer: O(log n)
(log 2x = x (base 2))

B. Rudner Introduction and Big-O notation December 12, 2020 13 / 17



E.g.

What is the Big-O of the following function?

def sum_powers_of_two(n):

total = 0

i = 1

while i < n:

total += i

i *= 2

return total

Answer: O(log n)
(log 2x = x (base 2))

B. Rudner Introduction and Big-O notation December 12, 2020 13 / 17



E.g.

What is the Big-O of the following function?

def slow_fibonacci(n):

if n == 1 or n == 2:

return 1

else:

return slow_fibonacci(n-1) + slow_fibonacci(n-2)

Answer: O(2n)

(can be tightened to O(1.618n))

B. Rudner Introduction and Big-O notation December 12, 2020 14 / 17



E.g.

What is the Big-O of the following function?

def slow_fibonacci(n):

if n == 1 or n == 2:

return 1

else:

return slow_fibonacci(n-1) + slow_fibonacci(n-2)

Answer: O(2n)

(can be tightened to O(1.618n))

B. Rudner Introduction and Big-O notation December 12, 2020 14 / 17



E.g.

What is the Big-O of the following function?

def slow_fibonacci(n):

if n == 1 or n == 2:

return 1

else:

return slow_fibonacci(n-1) + slow_fibonacci(n-2)

Answer: O(2n)
(can be tightened to O(1.618n))

B. Rudner Introduction and Big-O notation December 12, 2020 14 / 17



E.g.

What is the Big-O of the following function?

def sum_values_in_binary_tree(node):

sum = node.value

if node.left is not None:

sum += sum_values_in_binary_tree(node.left)

if node.right is not None:

sum += sum_values_in_binary_tree(node.right)

return sum

Answer: O(n) (where n is the number of nodes in the tree)

B. Rudner Introduction and Big-O notation December 12, 2020 15 / 17



E.g.

What is the Big-O of the following function?

def sum_values_in_binary_tree(node):

sum = node.value

if node.left is not None:

sum += sum_values_in_binary_tree(node.left)

if node.right is not None:

sum += sum_values_in_binary_tree(node.right)

return sum

Answer: O(n) (where n is the number of nodes in the tree)

B. Rudner Introduction and Big-O notation December 12, 2020 15 / 17



Will my program run in time?

Follow this procedure:

Determine the Big-O of your algorithm. E.g. O(nk log n).

Plug in the constraints of the question. E.g. n ≤ 10 000, k ≤ 50.
Then nk log n ≈ (10 000)(50)(13) = 6 500 000

Your result should be reasonable amount less than 100 000 000 -
typically less than 10 000 000 is reasonable. You may multiply this
10 000 000 by the time limit in seconds.

B. Rudner Introduction and Big-O notation December 12, 2020 16 / 17



Will my program run in time?

Follow this procedure:

Determine the Big-O of your algorithm. E.g. O(nk log n).

Plug in the constraints of the question. E.g. n ≤ 10 000, k ≤ 50.
Then nk log n ≈ (10 000)(50)(13) = 6 500 000

Your result should be reasonable amount less than 100 000 000 -
typically less than 10 000 000 is reasonable. You may multiply this
10 000 000 by the time limit in seconds.

B. Rudner Introduction and Big-O notation December 12, 2020 16 / 17



Will my program run in time?

Follow this procedure:

Determine the Big-O of your algorithm. E.g. O(nk log n).

Plug in the constraints of the question. E.g. n ≤ 10 000, k ≤ 50.
Then nk log n ≈ (10 000)(50)(13) = 6 500 000

Your result should be reasonable amount less than 100 000 000 -
typically less than 10 000 000 is reasonable. You may multiply this
10 000 000 by the time limit in seconds.

B. Rudner Introduction and Big-O notation December 12, 2020 16 / 17



Will my program run in time?

Follow this procedure:

Determine the Big-O of your algorithm. E.g. O(nk log n).

Plug in the constraints of the question. E.g. n ≤ 10 000, k ≤ 50.
Then nk log n ≈ (10 000)(50)(13) = 6 500 000

Your result should be reasonable amount less than 100 000 000 -
typically less than 10 000 000 is reasonable. You may multiply this
10 000 000 by the time limit in seconds.

B. Rudner Introduction and Big-O notation December 12, 2020 16 / 17



Common classes of Big-O

Class Big-O Typical upper limit on n n = 1 000 000

Constant 1 1

Logarithmic log n 20

Square root
√
n 1013 1000

Linear n 5 000 000

Linearithmic n log n 200 000

Quadratic n2 5 000

Cubic n3 200

Exponential 2n 24

Factorial n! 11

B. Rudner Introduction and Big-O notation December 12, 2020 17 / 17


