Introduction and Big-O notation

Bronson Rudner

South African Programming Olympiad
Training Camp

December 12, 2020

B. Rudner Introduction and Big-O notation December 12, 2020

What do | need to know to solve programming problems?

B. Rudner Introduction and Big-O notation December 12, 2020 2/17

What do | need to know to solve programming problems?

@ Basic coding skills and fluency

B. Rudner Introduction and Big-O notation December 12, 2020 2/17

What do | need to know to solve programming problems?

@ Basic coding skills and fluency

@ Knowledge of algorithms and data structures

B. Rudner Introduction and Big-O notation December 12, 2020 2/17

What do | need to know to solve programming problems?

@ Basic coding skills and fluency
@ Knowledge of algorithms and data structures

@ Ability to problem solve

B. Rudner Introduction and Big-O notation December 12, 2020 2/17

Todays agenda

We are focusing on algorithms and data structures. Why?

B. Rudner Introduction and Big-O notation December 12, 2020 3/17

Todays agenda

We are focusing on algorithms and data structures. Why?

@ Learning to code these will ensure you develop your basic coding skills
and fluency

B. Rudner Introduction and Big-O notation December 12, 2020 3/17

Todays agenda

We are focusing on algorithms and data structures. Why?

@ Learning to code these will ensure you develop your basic coding skills
and fluency

@ Many problems reduce to one of, or some subset of these

B. Rudner Introduction and Big-O notation December 12, 2020 3/17

Todays agenda

We are focusing on algorithms and data structures. Why?
@ Learning to code these will ensure you develop your basic coding skills
and fluency
@ Many problems reduce to one of, or some subset of these

@ They provide inspiration for further solutions

B. Rudner Introduction and Big-O notation December 12, 2020 3/17

Todays agenda

We are focusing on algorithms and data structures. Why?

@ Learning to code these will ensure you develop your basic coding skills
and fluency

@ Many problems reduce to one of, or some subset of these
@ They provide inspiration for further solutions

@ Serve as a guideline for solving problems efficiently

B. Rudner Introduction and Big-O notation December 12, 2020 3/17

Types of problems in programming contests

@ Ad-Hoc © Knapsack

Q Greedy @ Network Flow

© Computational Geometry @ Flood Fill

@ Dynamic Programming @ Shortest Path

© BigNums @® Approximate Search

@ Two-Dimensional @ Complete Search

@ Eulerian Path @ Recursive Search Techniques
© Minimum Spanning Tree @ Heuristic Search

B. Rudner Introduction and Big-O notation December 12, 2020 4/17

How fast are computers?

@ Computers are fast - but their speed is still finite

B. Rudner Introduction and Big-O notation December 12, 2020 5/17

How fast are computers?

@ Computers are fast - but their speed is still finite
@ On the order of 100000000 operations per second (C++)

B. Rudner Introduction and Big-O notation December 12, 2020 5/17

How fast are computers?

@ Computers are fast - but their speed is still finite
@ On the order of 100000000 operations per second (C++)

@ Java about 2x slower, Python about 10x slower (and Scratch is about
100x slower)

B. Rudner Introduction and Big-O notation December 12, 2020 5/17

How fast are computers?

@ Computers are fast - but their speed is still finite
@ On the order of 100000000 operations per second (C++)

@ Java about 2x slower, Python about 10x slower (and Scratch is about
100x slower)

@ It isn't enough to find an algorithm that solves a problem

B. Rudner Introduction and Big-O notation December 12, 2020 5/17

How fast are computers?

Computers are fast - but their speed is still finite
On the order of 100000 000 operations per second (C++)

Java about 2x slower, Python about 10x slower (and Scratch is about
100x slower)

It isn't enough to find an algorithm that solves a problem

It needs to solve it within the time limit

B. Rudner Introduction and Big-O notation December 12, 2020 5/17

@ The Fibonacci series is given by

1,1,2,3,5,8,...

where the next number in the sequence is given by the sum of the two
preceding numbers

B. Rudner Introduction and Big-O notation December 12, 2020 6/17

@ The Fibonacci series is given by
1,1,2,3,5,8,...

where the next number in the sequence is given by the sum of the two
preceding numbers

o Find the n™" Fibonacci number, given that 1 < n < 1000

B. Rudner Introduction and Big-O notation December 12, 2020 6/17

@ The Fibonacci series is given by
1,1,2,3,5,8,...
where the next number in the sequence is given by the sum of the two

preceding numbers

@ Find the nt" Fibonacci number, given that 1 < n <1000
@ def slow_fibonacci(n):
if n==1orn==2:
return 1
else:

return slow_fibonacci(n-1) + slow_fibonacci(n-2)

B. Rudner

Introduction and Big-O notation

December 12, 2020 6/17

@ The Fibonacci series is given by
1,1,2,3,5,8,...

where the next number in the sequence is given by the sum of the two
preceding numbers

o Find the n™" Fibonacci number, given that 1 < n < 1000

@ def slow_fibonacci(n):
if n == 1 or n ==
return 1
else:
return slow_fibonacci(n-1) + slow_fibonacci(n-2)

@ Increasing n by 1, (roughly) doubles the total number of calls of
slow_fibonacci

B. Rudner Introduction and Big-O notation December 12, 2020 6/17

@ The Fibonacci series is given by
1,1,2,3,5,8,...

where the next number in the sequence is given by the sum of the two
preceding numbers
@ Find the nt" Fibonacci number, given that 1 < n <1000
@ def slow_fibonacci(n):
if n == 1 or n ==
return 1
else:
return slow_fibonacci(n-1) + slow_fibonacci(n-2)
@ Increasing n by 1, (roughly) doubles the total number of calls of
slow_fibonacci

@ n = 40 calls slow_fibonacci about 200000 000 times!

B. Rudner Introduction and Big-O notation December 12, 2020 6/17

Big-O notation

@ Gives a rough idea of the runtime of a program / function

B. Rudner Introduction and Big-O notation December 12, 2020 7/17

@ Gives a rough idea of the runtime of a program / function

@ |s expressed in relation to the size of the input (n).

B. Rudner Introduction and Big-O notation December 12, 2020 7/17

@ Gives a rough idea of the runtime of a program / function
@ |s expressed in relation to the size of the input (n).

e If a program is O(f(n)), we mean it takes no more than C - f(n) steps
in total, for suitably large n (for some constant C).

B. Rudner Introduction and Big-O notation December 12, 2020 7/17

Gives a rough idea of the runtime of a program / function

Is expressed in relation to the size of the input (n).

If a program is O(f(n)), we mean it takes no more than C - f(n) steps
in total, for suitably large n (for some constant C).

In particular, if a program takes T(n) steps, it is O(T(n)).

B. Rudner Introduction and Big-O notation December 12, 2020 7/17

It is an upper bound:

n=0(n?), n*=0(n), 1=0(n)

B. Rudner Introduction and Big-O notation December 12, 2020 8/

It is an upper bound:
n=0(n?), n*=0(n), 1=0(n)
We ignore constant factors:

3 = O(), %n — 0O(n)

B. Rudner Introduction and Big-O notation December 12, 2020 8/

It is an upper bound:
n=0(n?), n*=0(n), 1=0(n)
We ignore constant factors:
3n* =0(n%), =n=0(n)
We only care about the largest term:

n* 4+ n=0(n?), 2n*+3n+1000 = O(n?)

B. Rudner Introduction and Big-O notation December 12, 2020

@ We usually consider the worst case bound

e E.g. linear search can be O(1) in the best case, but in the worst case,
and on average, it is O(n)

B. Rudner Introduction and Big-O notation December 12, 2020 9/17

@ We usually consider the worst case bound
e E.g. linear search can be O(1) in the best case, but in the worst case,
and on average, it is O(n)
@ If you are sure the data is suitably random, you could use average
time bound

B. Rudner Introduction and Big-O notation December 12, 2020 9/17

@ We usually consider the worst case bound
e E.g. linear search can be O(1) in the best case, but in the worst case,
and on average, it is O(n)

@ If you are sure the data is suitably random, you could use average
time bound

@ Can also describe memory of a program - but usually you are given
more memory than the time bound anyway

B. Rudner Introduction and Big-O notation December 12, 2020 9/17

What is the Big-O of the following function?

def triangular_nums(n):
nums = []
for i in range(n):
num = O
for j in range(i+1):
num += j+1
nums . append (num)
return nums

B. Rudner Introduction and Big-O notation December 12, 2020 10/17

What is the Big-O of the following function?
def triangular_nums(n):
nums = []
for i in range(n):
num = O
for j in range(i+1):
num += j+1
nums . append (num)
return nums

Answer: O(n?)

B. Rudner Introduction and Big-O notation

December 12, 2020 10/17

What is the Big-O of the following function?

def is_prime(n):

if n % 2 ==
return False

i=3

while i * 1 <= n:
ifn%i==0:

return False

i+=2

return True

B. Rudner Introduction and Big-O notation December 12, 2020 11/17

What is the Big-O of the following function?

def is_prime(n):

if n % 2 ==
return False

i=3

while i * 1 <= n:
ifn%i==0:

return False

i+=2

return True

Answer: O(+y/n)

B. Rudner Introduction and Big-O notation December 12, 2020 11/17

What is the Big-O of the following function?

def foo(numsl, nums2):
total = 0O
for x in numsl:
total += x
for x in numsl:
for y in nums2:
total += x * y
return total

B. Rudner Introduction and Big-O notation December 12, 2020 12/17

What is the Big-O of the following function?
def foo(numsl, nums2):
total = 0O
for x in numsl:
total += x
for x in numsl:
for y in nums2:
total += x * y
return total

Answer: O(nm) (where n, m is the size of nums1, nums2, respectively)

B. Rudner Introduction and Big-O notation December 12, 2020 12/17

What is the Big-O of the following function?

def sum_powers_of_two(n):
total = 0O
i=1
while i < n:
total += 1
i *= 2
return total

B. Rudner Introduction and Big-O notation December 12, 2020 13 /17

What is the Big-O of the following function?

def sum_powers_of_two(n):
total = 0O
i=1
while i < n:
total += 1
i x= 2
return total
Answer: O(log n)
(log2X = x (base 2))

B. Rudner Introduction and Big-O notation December 12, 2020 13 /17

What is the Big-O of the following function?

def slow_fibonacci(n):
if n ==1 or n ==
return 1
else:
return slow_fibonacci(n-1) + slow_fibonacci(n-2)

B. Rudner Introduction and Big-O notation December 12, 2020 14 /17

What is the Big-O of the following function?
def slow_fibonacci(n):
ifn==1orn ==
return 1
else:
return slow_fibonacci(n-1) + slow_fibonacci(n-2)
Answer: O(2")

B. Rudner Introduction and Big-O notation December 12, 2020 14 /17

What is the Big-O of the following function?
def slow_fibonacci(n):
ifn==1orn ==
return 1
else:
return slow_fibonacci(n-1) + slow_fibonacci(n-2)
Answer: O(2")
(can be tightened to 0(1.618"))

B. Rudner Introduction and Big-O notation December 12, 2020 14 /17

What is the Big-O of the following function?

def sum_values_in_binary_tree(node):
sum = node.value
if node.left is not None:
sum += sum_values_in_binary_tree(node.left)
if node.right is not None:
sum += sum_values_in_binary_tree(node.right)
return sum

B. Rudner Introduction and Big-O notation December 12, 2020

What is the Big-O of the following function?
def sum_values_in_binary_tree(node):
sum = node.value
if node.left is not None:

sum += sum_values_in_binary_tree(node.left)
if node.right is not None:

sum += sum_values_in_binary_tree(node.right)
return sum

Answer: O(n) (where n is the number of nodes in the tree)

B. Rudner Introduction and Big-O notation December 12, 2020

Will my program run in time?

Follow this procedure:

B. Rudner Introduction and Big-O notation December 12, 2020 16 /17

Will my program run in time?

Follow this procedure:

@ Determine the Big-O of your algorithm. E.g. O(nk logn).

B. Rudner Introduction and Big-O notation December 12, 2020 16 /17

Will my program run in time?

Follow this procedure:
@ Determine the Big-O of your algorithm. E.g. O(nk logn).

@ Plug in the constraints of the question. E.g. n < 10000, k < 50.
Then nklog n =~ (10000)(50)(13) = 6500000

B. Rudner Introduction and Big-O notation December 12, 2020 16 /17

Will my program run in time?

Follow this procedure:
@ Determine the Big-O of your algorithm. E.g. O(nk logn).
@ Plug in the constraints of the question. E.g. n < 10000, k < 50.
Then nklog n =~ (10000)(50)(13) = 6500000
@ Your result should be reasonable amount less than 100 000 000 -
typically less than 10000000 is reasonable. You may multiply this
10000000 by the time limit in seconds.

B. Rudner Introduction and Big-O notation December 12, 2020 16 /17

Common classes of Big-O

Class Big-O | Typical upper limit on n | n = 1000000
Constant 1 1
Logarithmic | logn 20
Square root | +/n 10%3 1000
Linear n 5000000
Linearithmic | nlogn 200000
Quadratic n? 5000
Cubic n’ 200
Exponential 2" 24
Factorial n! 11

B. Rudner Introduction and Big-O notation December 12, 2020 17 /17

